Rainrate Estimation from FY-4A Cloud Top Temperature for Mesoscale Convective Systems by Using Machine Learning Algorithm
نویسندگان
چکیده
Satellite rainrate estimation is a great challenge, especially in mesoscale convective systems (MCSs), which mainly due to the absence of direct physical connection between observable cloud parameters and surface rainrate. The machine learning technique was employed this study estimate MCS domain via using top temperature (CTT) derived from geostationary satellite. Five kinds models were investigated, i.e., polynomial regression, support vector machine, decision tree, random forest, multilayer perceptron, precipitation Climate Prediction Center morphing (CMORPH) used as reference. A total 31 CTT related features designed be potential inputs for training an algorithm, they all proved have positive contribution modulating algorithm. Random forest (RF) shows best performance among five models. By combining classification regression schemes RF model, RF-based hybrid algorithm proposed first discriminate rainy pixel then its For samples considered study, such generates estimation, accuracy definitely higher than operational product FY-4A. These results demonstrate promising feasibility applying solve satellite retrieval problem.
منابع مشابه
channel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Cloud-to-Ground Lightning in Linear Mesoscale Convective Systems
Recently, three distinct archetypes for midlatitude linear mesoscale convective systems (MCSs) have been identified: those comprising convective lines with trailing stratiform precipitation (TS), leading stratiform precipitation (LS), and parallel stratiform precipitation (PS). While cloud-to-ground (CG) lightning in TS MCSs has received a great deal of study in recent years, linear MCSs exhibi...
متن کاملThe Use of Cloud-Resolving Simulations of Mesoscale Convective Systems to Build a Mesoscale Parameterization Scheme
A method is described for parameterizing thermodynamic forcing by the mesoscale updrafts and downdrafts of mesoscale convective systems (MCSs) in models with resolution too coarse to resolve these drafts. The parameterization contains improvements over previous schemes, including a more sophisticated convective driver and inclusion of the vertical distribution of various physical processes obta...
متن کاملAnalysis of updraft velocity in mesoscale convective systems using satellite and WRF model simulations
Updraft vertical velocity is an important dynamical quantity which is strongly related to storm intensity and heavy precipitation. It can be calculated by direct observations, NWP model, and geostationary satellites which can provide the possibility of measuring this quantity with high temporal resolution. This research analyzed updraft velocity based on six derived parameters from INSAT3-D and...
متن کاملMesoscale convective systems and critical clusters
Size distributions and other geometric properties of mesoscale convective systems (MCS), identified as clusters of adjacent pixels exceeding a precipitation threshold in satellite radar images, are examined with respect to a recently identified critical range of water vapor. Satellite microwave estimates of column water vapor and precipitation show that the onset of convection and precipitation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2021
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs13163273